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Abstract. A virtual sensor is an information-processing based device
designed to get information about an internal process variable which is
not directly accessible. It may receive information from several sensors as
well as the sequence of process inputs, updated following a given pattern.
By using a model of the process, the desired variables are estimated at
the desired rate. Virtual sensors can be used to monitor the evolution
of some internal variables, some quality indices or some parameters in
the process. Moreover, the estimated variables can be also used to feed
a control system or to provide some sort of redundancy in the measure-
ments. In this way, richer feedback control loops can be implemented or
more reliable redundant control systems can be designed. In this plenary
talk, some of the main issues in the design of virtual sensors are discussed
and their main features, such as robustness or convergence, are analyzed.
Some illustrative applications illustrate the main concepts.

1 Introduction

The main goal of a sensing device is to provide reliable, precise, up-to-date and
concise information about a process variable, parameter or index, to be used for
different monitoring or control purposes. The basic transducer device converts
a variable into another one which is easier to handle. It is also typical to get
an improvement in the sensed variable by correcting this basic measurement
by means of related information based on the characteristics of the transducer
(non-linear compensation) or the environment (temperature compensation).

Modern computer-based systems allow for more versatile sensors providing
such information without the need for extra hardware. Additional features such
as device identification, change in the range of operation, availability, storage
of previous values and so on are also typical in modern sensors. This leads to
the concept of smart sensors, that is, sensors devices providing not only the
value of the sensed variable (one of the possible optional measurements) but
also data about the operating conditions, location of the device and quality of
the measurement. This data allow for a better management of the full data
acquisition system.
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The use of Al techniques also allows for some sort of intelligence in performing
these tasks. As a result, these devices are sometimes known as intelligent sensors,
being also able to validate, communicate and report the sensed variable and
reconfigure its operation based on additional knowledge about environmental
conditions.

The common features of advanced sensors include: to convert the sensed
variable into a treatable signal (in digital form), to cover a wide range of interest,
to provide the best measurements in terms of accuracy, timing (conversion time,
delays), disturbances (noise and drifts) or linearity, to prevent maintenance and
detect malfunctioning, and to communicate with the user as well as the rest of

components.

Most of these devices, originally working in continuous time, are conceived
to operate under regular sampling/updating patterns.

The concept of a virtual sensor is rather different. The estimated value of the
variable is computed as a result of the action of the process inputs on a model of
the process, combined with additional information taken from the process. In this
way, the sensed variable is not directly measured, it may bfe even not accessible or
physically measurable, but there exists a model relating its time evolution with
that of the available variables. Virtual sensors may also incorporate some of the
features already mentioned for smart or intelligent sensors. Virtual sensors can
be used to monitor the evolution of some internal variables, some quality indices
or some parameters in the process. Moreover, the estimated variabk?s can be also
used to detect faulty conditions, to feed a control system or to provide some sort
of redundancy in the measurements. In this way, richer feedback control loops
can be implemented or more reliable redundant control systems can be designed.

Moreover, the constraint of regular sampling/updating pattern may be re-

moved in such a way that the measurements are gathered aft different time in-
stants. Figure 1 represents a continuous-time process manipulated by severa)
continuous-time inputs (u(7), T € R, measurable, and 'l.Jc('r)3 unmeasurable) ang
several output signals (y(7)) that can be measured with different rates and at
different time instants. Some of them could be measured with redundant sep-
sors of different precision, different sampling rates and different associated delay,
leading to the discrete-time measurement values m; k, where ¢ refers to the sensor
number.

Assume that the values of some internal variables z(7), which are not directly
measurable but are a function of the measurable ones, are needed for monitoring
or control purposes. Moreover, assume they are required at a fixed frequency
on predefined time instants. In this scenario, a virtual sensor is defined as the
information-processing device that based on the knowledge of the applied inputs
and the measurement of the available outputs at arbitrary instants, predicts the
values of the desired signals at the required time instants [1].

Among the virtual sensors applications the following cases can be considereq:
a) the process variable cannot be directly measured, i.e. measuring some per-
formance; b) the physical sensor is too expensive, not enough accurate or too
slow, like a chromatograph; c) the sensor placement is not accessible, like the
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Fig. 1. General setting for internal knowledge estimation in MIMO process with several
Sensors.

burning temperature in a cement kiln; or d) it should be too far away of the
place of interest, like the moisture of the paper web at the headbox exit. Other
situations may also require a virtual sensor if, for instance, there is no room for a
physical device or it is very expensive to maintain. Some applications of virtual
sensors are reported, i.e. in [2] and [3].

Several approaches can be used for this prediction. The simplest one is to in-
terpolate or extrapolate the measurements with any interpolation method. This
idea could result in a computationally simple predictor that can be applied if
the targeted variables are measurable. However, if the frequency of the mea-
surements is not high enough the predictions could have a large error. In these
situations the predictions can be significantly improved if a model of the process
is used and the inputs as well as the output measurements are taken into account
in the predictor algorithm.

The model of the process can be identified off line or can be estimated online
by an adaptive algorithm running on the virtual sensor. In this work the general
case of unmeasured output prediction is studied, where several signals that are
related to the output are assumed to be measured at different instants (the
desired output may be one of them, but not necessarily).

The process is assumed to be a continuous linear time-invariant system mod-
eled by the equations

(1) = A z(7) + Beuc(7) + Bycwe(T), (1a)
y(7) = Cy z(7), (1b)
where £ € R" is the state, u € R™ is the input vector, w.(7) € R™ is the

continuous time disturbance vector and y € R™v is the measured output vector.
The vector of targeted variables can be written as

£(7) = C, 2(7), (1c)
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where z(7) € R". In the general case, z(7) can be a nonlinear function or a
functional of the state, like if a performance index is considered.

If the input signals are updated at a fixed period (control period) T by means
of a zero order hold (ZOH) (u(t) = uft],r € tT,tT + T)) where t € N, then
there is a discrete equivalent model of (1) that relates the values of the di;crete
input sequence and the values of the states and outputs at the input updating

instants, that can be expressed as

z[t + 1) = Ax[t] + Bu[t] + Bw wlt], (2a)
ylt] = Cy =lt], (2b)
z[t] = C, z[t]. (2¢)

ed, the sensor measurements are going to be considered

As previously mention
being a noisy and delayed

only available at discrete instants of time 7 = 7k,
function of the measurable outputs:

mig = G (e — Oik) + Viks £ =1r-02m (3)

asurement of sensor i at the k-th sampling (not all
lable at each sampling time), with delay §; » and
m is the number of sensors. The availability factor

where m; x is the available me
sensor measurements are avai
measurement noise V;,k, and n
a; k defined as

{ 1, if m; x is available, )

aik = . . y
Gk 0, if m; x is not available,

the available measurements at the k-th sampling instant.

indicates which are
ble dynamics, the last repre-

If some of the sensors have their own non negligi

sentation is also valid just by using some of the process states as sensor states

(see [4.5))-
If the sen
(synchronously with the input update) and are affe

the measurement equation (3) can be written

sor measurements are assumed to be only available at instants ¢ = ¢
cted by a variable time delay,

mik =Cim[tk—di,k]+lli,k, 1=1,...,m (5)

where d; i is the discrete delay (measured in number of control periods) assigned
to sensor % in the k-th sampling.

The rest of this paper is structured as follows. In the next section the basic
structure of a virtual sensor is described. The simplest and more useful situations
are analyzed and the sensor properties are summarized. For the sake of clarit
all the treatment is done in discrete time. Continuous time and random occui"—’
rence of measurements and input updating considerations introduce additional
complexity in the treatment [5]. The general case of arbitrary sampling/updatin
pattern is considered in Section 3. A Kalman filter approach, which is also Va]ig
in the previous cases, is generalized in Section 4. Then, a typical application i
presented and some conclusions are drafted in the final Section. °
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2 Virtual sensor structure

In the following, only discrete time systems are considered. Assume that some
variable values are required at each input updating, z(t] (z[t] = z(¢T)), but they
are not available. Instead, the values of some of the elements of the vector y(7)
are measured at different sampling instants. The virtual sensor is a dynamic sys-
tem similar to (2) whose inputs are the input action at rate T and an innovation
term J elaborated from the irregularly sampled values of y(7) (i.e., mix) and
their estimates, and whose output is the predicted value of z|t].

&t + 1) = AZ[t] + Bult) + I(m, §), (6a)
y[t] = Cv‘i’[t]» (6b)
2] = C, £[t). (6¢)

The innovation term should be designed to assure some properties of the predic-
tor. In particular, the sensing error

z[t] = z[t] - 2[1] (™M

should be small and converge to zero under nominal and constant operating
conditions, regardless the stability condition of the plant (the plant matrix A
not necessarily being Hurwitz). Also, the sensitivity of this error with respect to
measurement noises and plant disturbances should be bounded.

Depending on the sampling scenario, different prediction algorithms can be
used to estimate the state and the targeted variables at the input updating
instants.

2.1 Conventional sampling

The simplest case corresponds to a regular sampling/updating of all the signals,
with a period T and without any delay in any of the measurement signals. The
innovation term is made proportional to the output estimation error, i.e.

J(mfg) = L(m - C:i:)’ (8)

where C is the matrix formed with the rows ¢; that define each sensor equa-
tion (5). As it is well known [6], the error dynamics is characterized by the
eigenvalues of A - LC.

In this regular case, this innovation sequence can be filtered by a discrete
transfer matrix L(z). The virtual sensor can be represented in block diagram as
depicted in Figure 2, where it has been assumed that ny, = ny.

As already mentioned, by L(z) = L a constant matrix, the stability of the
sensor (like in any Luenberger-type observer) can be ensured, if the pair (A,C)
is observable. By the appropriate selection of the filter L(z), the sensitivity func-
tions relating the estimated output with respect to noise and plant disturbance
can be fine tuned (see, i.e., [4] and the references therein).
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Fig. 2. Innovation in virtual sensor.

Denoting by ¢(z) = (2I — A)™!, the noise sensitivity function is
T:, = C: (¢(2)~! + L(2)C) ™' L(2). (9)

An analysis of the shape of the frequency response of this function will enlighten
the possible options in selecting L.

2.2 Nonconventional regular sampling

Assume now that all the measurements are available without delay periodically
at the same instants of time, being N the number of input updates between two
consecutive measurement instants (N = ¢ — tx—1). In this case, the innovation
term (8) is only applied at sampling instants, leading to the prediction error
dynamics (in the absence of disturbances):

jk-{-l = .Ai:k — (I = LC) AN :i:ky (10)
2k = Cz(i:k, (11)

The state estimation error is defined as & = x[tx] — &[tx]. The necessary and
sufficient condition to stabilize the predictor is to take a matrix L such that all
eigenvalues of A are inside the unit circle ([5]).

In this case, the analysis by using matrix transfer functions is rather complex
involving Z-modified transform representations ([7])-

3 Nonconventional general sampling

Assume now that measurements are taken synchronously with the input updat-
ing instants, but not all sensors are available at every sampling instant. Assume
also that the available sensors have a different time-varying delay. Then, a dif-
ferent prediction algorithm must be developed in order to make use of all the
available measurements in spite of their availability and delays. The state is first
periodically updated running the model (2) in open loop from the last sampling
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instant {31

t—1p—1

Eltltk—] = AT Eltea]+ D AT'Buft — ). (12a)

i=1

where &[t|tx—1] represents the state estimation at time ¢ with the available mea-
surements until ¢x_;, and &[tx—1] represents the state estimation at tx_; with
the available measurements until {x_1, i.e., the best estimation of x(tx—1). If a
new measurement is available at ¢ = t; the state is updated as

Nm

&ltr] = telts — 1)+ D Lik (Mik — ¢ Bltk — di gty — 1]) @ik (12b)

i=1

where £; . is the innovation gain vector used to update the state estimation
with the measurement m; . Equation (12b) uses the delayed state estimation
&[tx — di x|tk — 1], that is calculated as

d; x
B[tk — diklteos] = A7%* Bltelty_y] + D AIT17dw Bty — j]. (12c)
i=1

To reduce the computational cost on the delayed state estimation, an extended
state vector including all the necessary past estate estimations can be used
(see [8]). The desired output prediction is obtained by means of the output
equation 2[t] = C, &[t].

The features of the predictor are determined by the gains £;  used to up-

date the state estimation upon the sampling of each measurement, that is, the
innovation matrix gain

L= [el,k Log - e'n,,.,k] (13)

The predictor matrix gain must be designed to assure the predictor stability,
robustness to the sporadic data availability, and disturbance and noise attenua-
tion. The predictor gain is, in general, time-varying, but the case of a constant
gain can be also feasible. In order to design a predictor, i.e., to determine the
predictor matrix gain (13), with those properties several techniques can be used,
depending on the nature of the sampling scenario and disturbances. The different
design techniques considered are pole placement, LMI based disturbance atten-
uation, and Kalman filtering. The situations in which each of the techniques are
more suitable will be discussed in the following.

The case developed in subsection 2.2 is a particular case in which the mea-
surements were taken regular and periodically and, therefore, the pole placement
technic is applicable. If the measurements are taken synchronously with the in-
put update but they have irregular delay and availability, the pole placement
technique cannot be applied. In order to derive an LMI based design technique
some definitions must be made first.
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The measurements m; j are assumed to be available irregularly at discrete
instants ¢t = 5. t € IN, k € IN, being Ny = t3 —tx—1 the number of input updates
from tx_; to tx, and, therefore t;, = ZL] N; represents the instant in which
the ¢-th input update occurs and the k-th sample is available (formed with the
values of some of the sensors). The availability matrix at instant ¢x is defined as
a;. = diag{aik,...,Qn,, k}.- The sampling scenario parameter sk is defined as
the combination of sensor availability, time between samples and sensor delay
(ax, Nx,d; ;) that defines a sample, and enumerates all the possible sampling
situations as

s €8 ={1,2,...,8s}, (14)
where ns is the number of possible combinations. All the variables that define
the sampling scenario can be expressed as a function of this parameter, i.e.,
Nk = N(sx), dix = di(s), and ax = a(sk). If the updating gain matrix is
also defined to have a different value for each possible value of the sampling
parameter, that is

Li = L(st) € £ ={L(1), L(2), ..., L(ns)}, (15)

then, the prediction error dynamics is demonstrated to be of the parametric form

(see [8])

&k = A(sk) Zr-1 + B(sk) Vi (16a)
% = C, &, (16b)
wlty — 1]
w[tk — 2]
with Vi = ; . B = max{di(sk),---+dn.(s5k), N(sk)},Vsx € S,
w(ty — O]
Vi

and where
c A—d1(sx)

A(sk) = (I - L(si) alsk) Ca(si)) ANE®,  Ca(sk) = :
Cn,, A~dnm (k)

Nm XN

B(sk) = [A(N(sk)) — L(sk) ce(sk) Calsk)  —L(sk) ex(sr)]

¢y A= (k) (A(N(sk)) — A(da(sx)))

Ca(sk) = : ‘
oh A—dnm(sk) (A(N(sx)) — A(dn,, (sk))) nm X0Bn

N(sx)

e

A(N(sg)) = (B, ABy A’By - ANV7IB, 0 - Oluxga,.  (17)
B
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With the introduction of parameter s the error dynamics is a parametrically
time-varying linear system, specifically a jump linear system, where the distur-
bances and noise vectors (V) are the inputs, the state estimation error (%) is
the state, and the desired output prediction error (2) is the output.

The predictor design objective is to find a procedure to calculate the matrix
L(s) (time varying with s, or constant) that leads to an adequate performance
in terms of disturbance attenuation and robustness to the time varying delay and
availability. The main idea consists of minimizing the norm of the transfer func-
tion from input V; to output 2x. Different norms can be used depending on
the known norms that characterize the disturbances. If the ¢, norm of the dis-
turbances is known, the Ho, norm can be minimized in order to minimize the
¢ norm of the prediction error. If the £, or RMS norm of the disturbances is
known, minimization of Hs, implies the minimization of the RMS value of the
prediction error. If the disturbances are white noises of known variance, mini-
mization of Hz norm will imply the minimization of RMS norm of the prediction
error.

As an example, the design procedure for one of the transfer function norms
is shown. If the £, norm of the disturbance and noise signals are known, it is
possible to minimize the norm ||Z||2 by means of minimizing the sum

MNm

Nw

2
> o2 Mwikl3 + D 2 lvikll3
i=1 i=1

along all variables 7u,, 1,, P(sk) = P(s)T € R™", Q(s5) € R™™, X (s) €
R"*"m 5. € S that satisfy the LMI equation

Q(sk) + Q(sk) " — P(sk) M4 (sk) Mp(sk)

MA(Sk)T P(Sk-]) = CJCy 0 >0 (18)
MB(Sk)T 0 I
with
Ma(sk) = (Q(sk) — X (sk)ax(sk) Calsi)) ANGH), (19)
Mp(sk) = [Q(sk)A(N(sk)) — X (sk)x(sk) Ca(sk) — X (sk)cx(sk)] (20)
I“=diag{I‘1'u,I“,,}, I'.l:, = %diag{rw,---qrw}ﬁnxﬁnv
T =dingl o, 55 s Fuwn I Iy = diag{Vurs o3 %un Ie

with matrix A(N(sg)) defined as (17). This problem can be solved with LMI
standard solvers. Finally, the matrix gain that minimizes the norm error is
L(sx) = Q(sk)~* X (sk). This solution gives a different gain for each sampling
scenario, that leads to a scheduled-gain predictor implementation. If some restric-
tions are made over matrices Q(sx) and X (sk), it is possible to obtain different
implementations. For example, if Q(sx) and X (sx) are chosen to be constant
(ie., Q(sx) = Q and X (sx) = X) a constant gain L is obtained leading to the
predictor with the lowest computational cost (see [9]).
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Application to asynchronous sampling. When dealing with asynchronous mea-
surements (taken at arbitrary time instants), the use of a continuous time model
is necessary, implying matrix exponentials computation and, therefore, a high
computational cost. In order to avoid this, an interpolation is proposed to first
estimate the value of the output measurement at synchronous instants with the
input update (when 7 =tT). If 7x (tT < 7 < (t+1)T) is the instant in which
an asynchronous measurement y(7) takes place, the idea is to use an interpola-
tion technique that gives a synchronous measurement m; corresponding to the
instant t or t + 1, i.e., mx = f(y(7%),7x). When this technique is applied, a
new measurement noise is introduced, whose value depends on the interpolation
technique. As the interpolation technique is known, the noise norm due to in-
terpolation errors can be bounded and, therefore, the previous technique is also
applicable (see [5]).

4 Kalman filter techniques

Assume that the disturbances w(t] and vy are white noise with variance-covariance
matrices W and V respectivelly. (E{w[t]Tw[r]} = Wt — 1), E{vv;} =
V§(k — j)). Assume that some of the elements of vector y(7) are measured at
arbitrary discrete instants tx, k € IN (at least one element m; . is available at
instant t;). Let us define the px X nm matrix M, formed with the rows of an
identity matrix that correspond to the position of the elements m;  available at
instant ¢k, thus px is the number of variables measured at instant ¢x. Ny is the
elapsed time between the last two consecutive sampling instants (N = tie—tg-1)
and d; i is the delay of an individual measurement m; k. Under these supposi-
tions, the gain matrix Ly that minimizes the error variance (Kalman filter) of
the algorithm (12) is calculated on-line by ([1,5])

Ny-1

Oppeor = AVQp_1(AT)™ + 3~ A'B,WB (AT,
=0

a = -1
Ly = Qkjk-1 (Mde,k)T(Mk (Cd,kQHk-—lC:i[:k +V+ Wd) MkT) M.
Qi = (I - LiCayp) Qi1

being
c Ak C]A—dl'kA(dlyk) 1% 0

Cor = : , Wy = :
Car AT imnit

o

Crm ATk Adn, k)] [0 W

Nm XN

—

If the measurements are available periodically and the delay in each sensor
is constant, an stationary solution of the above equations can be obtained and
then, the predictor gains can be calculated off-line and applied as an scheduled
gain predictor (as in the solution in the LMI based approach).
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5 Application example

Consider the system shown in the figure 3. The input of the system is the force
that is assumed to be updated by a controller at a constant rate of T' = 0.5s. The
measured signals are § and r, but they are assumed to be measured by binary
sensors that produce a digital pulse when the signal reaches some predefined
values. A low cost encoder produces a pulse every 1 m for the r signal. The 6
signal is assumed to produce a pulse at values {—0.07 — 0.02 0.02 0.07}. As a
consequence there are measurements of both # and r at random instants that are
asynchronous with the input update. The linearized model of this system (see
[10]) is defined by the shown matrices, where B,, = B.. The output variable

T

u (force)
—_ ¢=0.4Ns/m
0 1 0 0 0
0 ==< -m3 0 2 &
= M M = M
: e 0 O 0 1.2 B. 0 4
L=10m/ 0 — 55 — s g oL
; c —[1000 o
m=100kg© 0 Y710010

Fig. 3. Crane with binary sensors.

of interest is assumed to be 6, and hence C, = [0 0 1 0]. The objective of the
predictor is then to estimate the value of § at the synchronous instants (i.e.
to obtain f[t]). For the simulation, the input is generated as a band limited
white noise of period 1 sec. and power 100, that is contaminated by another
band limited white noise of power 2 and period 0.2 sec. The measurements
are contaminated by additive random normal noise of variance 0.01%2rad? and
0.12m? respectively. A Kalman filter is designed taking first the matrices V =
[0.12 0;0 0.01%) and W = 4. In the figure 5 the true and the estimated states
at the measurement instants are shown, as well as the true output (6[t]) and
the predicted one (é[t]) at the input updating instants. The average quadratic
prediction error is 1.357 - 1075,

If the V and W matrices are not exactly known, the behavior is not optimal,
but the predictor still works well. As an example, if the matrices used in the
predictor equation are V' = [0.12 0;0 0.022] and W = 2, the quadratic prediction
error average is 1.94 - 1075, and with V = [0.12 0;0 0.005%] and W = 8, the
quadratic prediction error average is 2.52 - 107°.

Consider now the case when the output of the system is measured by 2
sensors with different precision and measurement availability instants. This idea
is covered by the general model taking Cy = [C] CT]T and V' = [v1 v12 ; v12 v2].
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Fig 4. True (- left, 0 right) and estimated (x) output, and prediction error at the input
updating instants (7).

Assume now that only 6 is measured with 2 sensors. The first one is a binary
sensor fixed on position & = 0 that gives scarce but very precise measurements
(null noise variance assumed). The second sensor is a continuous sensor that gives
a measurement every N = 2 input updating periods but with a noise variance of
0.0062 (hence V = [0.0062 0;0 0]). With the same input conditions as before the
average quadratic prediction error is 4.35 - 1078, In order to compare the sensor
fusion effect of the predictor, the same simulation is carried out assuming that
only the second sensor is available, obtaining an error of 10.5 - 1076. If only the
first sensor is used the resulting error is 10.7- 1076, In the figure 5 the prediction

errors are shown.

Fig. 5. Error with different sensor measurements.
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Consider now a control period of T' = 0.2 s. Assume that the angle and hor-
izontal position are measured synchronously with the input update every 2 or 4
seconds (N = {10,20}), and assume also that the signal transmission takes 0.4
or 0.8 seconds (d; = {2,4}) because they are accessed through a shared network.
It is assumed that 7 and 6 are measured with zero mean white noise sensors with
typical deviation o = 0.01 m and gy = 0.001 rad. In this scenario, both H, and
Kalman predictor are applied in order to implement a closed loop control us-
ing the state estimation. A disturbance v(7) = 0.2, 7 > 200s has been applied.
Figure 6 show the results with H,, and Kalman filter approaches. Before the
constant disturbance, the performance with Hs, and Kalman filter approaches
is similar. With the disturbance, the H, approach leads to a prediction error
characterized with o, = 0.048, while the Kalman filter leads to o, = 0.078. An
explanation to this fact is that the Kalman filter is optimum only if the distur-
bances are white noise with zero mean. On the other hand, the computational
cost of the Kalman filter is 8 times the H, predictor.

1 1
%o o
- \ S
-1 = -1 v
-2 £
€00 800 1000 1200 1400 1600 1800 600 800 1000 1200 1400 1600 1800
004 004
002 J 002
&
i; o.__l “,._..,,\.....,L £ o
> — Output vV > — Output
002} [ - = = H_ predictor -002) — — — Kaiman fiter
+  Samples .
-0.04 -004 Samples
600 800 1000 1200 1400 1600 1800 600 800 1000 1200 1400 1600 1800
xlabel xiabel

Fig. 6. Crane Control with different virtual sensors.

6 Conclusions

A virtual sensor has been defined as the intelligent device that estimates the de-
sired outputs of a process using the information of the model, the known control
inputs, and the accessible outputs measured with different sensors with different
availability, noise and delays. Two different estimation algorithms that address
sensor availability, scarce measurements and delays as a whole have been pro-
posed (continuous and discrete one). Different techniques have been proposed
for different sampling scenarios: pole placement (for periodic sampling), LMI
based approach (when the different sampling scenarios are known and finite)
and Kalman filter based techniques (for the general case with white noise dis-
turbances). The Kalman filter needs an on-line calculation of the predictor gain,
while the other techniques calculate the gain off-line, leading to a lower compu-
tational cost predictor.
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